2019-02-01から1ヶ月間の記事一覧
カーネル密度推定法の式(13)を使って、実際に確率分布を推定してみたいと思います。推定する対象は、棄却サンプリングを使って、適当な形状の分布を用いることにします。 早速結果です 青色の線がサンプリングした確率分布で、オレンジの線がカーネル密度推…
パターン認識と機械学習(下)のカーネル法を勉強しています。カーネル法とは直接関係ないようですが、カーネル密度推定法(パターン認識と機械学習(上)で紹介されています)を勉強したので記事にします。 カーネル密度推定法とは、サンプルデータから元の…
概要 ニューラルネットワークの概要 誤差逆伝播法 誤差逆伝播法 出力ユニット活性で微分(回帰) 出力ユニット活性で微分(2クラス分類) 出力ユニット活性で微分(多クラス分類) 回帰と分類をニューラルネットワークで解く ニューラルネットワークで回帰を…
先回、ニューラルネットワークで回帰を解くで回帰を解きましたので、今回は3クラスの分類問題をニューラルネットワークで解いてみます。出力の活性化関数をソフトマックスにするだけで、実装は前回と同じです。隠れ層は前回の3つのままだとうまく分類できな…
19年1月は好調でした。でも投信は昨年10月、12月のダメージが大きくてまだ含み損。 機械学習も記事をようやく更新したので、これからまた勉強を再開していきたいところ。ブログで勉強したことをまとめていると、学習したことを思い出すのにすごく役立ちます…